THE STRUCTURE OF THE SIDE CHAIN OF THE FROG ALKALOID PUMILIOTOXIN B

Takashi Tokuyama*, Katsuhiko Shimada and Motokazu Uemura Faculty of Science, Osaka City University Sugimoto-cho, Sumiyoshi-ku, Osaka, Japan 558

John W. Daly

Bldg. 4, Room 212, National Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, U.S.A. 20205

Summary: The E configuration at the double bond and <u>threo</u> relation for diol moiety of the pumiliotoxin B side chain were defined, respectively, through nuclear- Overhauser effects and comparison with model <u>threo</u>- and <u>erythro</u>- diol compounds.

Pumiliotoxins, first isolated from the Panamanian frog <u>Dendrobates pumilio</u>, belong to two structural classes: pumiliotoxin A (<u>1</u>) and B (<u>2</u>) are 8-hydroxy-8methyl-6-ylidene-1-azabicyclo[4.3.0]nonanes, while pumiliotoxin C is a 2,5dialkyl-cis-decahydroquinoline^{1,2)}. A relatively simple member of pumiliotoxin A class was isolated from an Ecuadorian frog, <u>Dendrobates tricolor</u>: X-ray analysis of this alkaloid <u>251D</u> (<u>3</u>) provided not only its structure and absolute configuration, but the key to the structure of pumiliotoxin-A class of dendrobatid alkaloids³⁾. Recently the alkaloid <u>251D</u> has been synthesized from Lproline⁴⁾. The structures of pumiliotoxin A and B were deduced from magnetic resonance studies to be as in Fig. 1 with R: $-CH_2CH_3-CHOH-CH_2CH_3$ for pumiliotoxin A and R: $-CH_2CH=CCH_3-CHOH-CHOH-CH_3$ for pumiliotoxin B. The configuration Z or E at the double bond and the configuration of the hydroxy groups in pumiliotoxin A and B remained uncertain. This communication reports on results of the configuration studies on the double bond and relation (<u>three</u> or <u>erythre</u>) between 15- and 16-hydroxy groups of pumiliotoxin B.

2121

Definition of the double bond as E configuration was based primarily on nuclear-Overhauser (NOE) effects. Thus, irradiation of the C-15 proton at $_6$ 3.65 resulted in a marked intensity enhancement (14%) in the C-13 olefinic proton at $_6$ 5.39, while irradiation of the C-19 methyl at $_6$ 1.58 resulted in no significant intensity enhancement in the same olefinic proton. Manganese dioxide oxidation of pumiliotoxin B yielded an aldehyde $C_{17}H_{27}NO_2$ ($\underline{4}$, m/z 277.2038, $_6$ 9.37 for -CHO, 2,4-dinitrophenylhydrazone m/z 457) through cleavage of the glycol moiety. The aldehyde could be oxidized further to the carboxylic acid methyl ester (m/z 307, $_6$ 3.75 for -OCH₃) following the Corey's method⁵⁾. The chemical shifts for the C-13 protons in the aldehyde ($_6$ 6.40) and in the carboxylic acid methyl ester ($\underline{5}$, $_6$ 6.67) are compatible with E-configuration of the double bond. Calculated chemical shifts^{6,7)} for the aldehyde and methyl ester having E-configuration are $_6$ 6.35 and $_6$ 6.53, while for the corresponding compounds having Z-configuration $_6$ 6.61 and $_6$ 5.96 (for further details, see ref. 8).

The hydroxyl groups on C-15 and C-16 of pumiliotoxin B were revealed to be in the <u>threo</u> configuration by comparison with model diol compounds ($\underline{6}$, <u>threo</u> and $\underline{7}$, <u>erythro</u>) which were synthesized under stereo control as follows (Fig. 2):

A methyl ketone (<u>8</u>), which was easily obtained from tiglic aldehyde, produced predominantly <u>erythro</u> diol (<u>7</u>) by LiAlH₄ or NaBH₄ reduction⁹⁾ and subsequent debenzylation with Na-NH₃ (<u>erythro/threo</u> ratio, 90-95/10-5). The <u>threo</u> diol (<u>6</u>) was obtained from an aldehyde (<u>9</u>) with CH_3MgBr^{10} and then Na-NH₃ (<u>erythro/threo</u> ratio, 15/85). The stereochemistry of both compounds was confirmed by nuclear-Overhauser effects in experiments in which irradiation at C-5 proton (δ 4.43) on the cyclic phenylboronide (<u>11</u>) of the <u>threo</u> diol resulted in an 11% enhancement in the resonance peak due to the methyl group on carbon-4

(δ 1.42) and irradiation at C-4 proton (δ 4.35) resulted in an 8% enhancement in the same methyl group. In the case of the cyclic phenylboronide (<u>10</u>) of the <u>erythro</u> diol, an irradiation at the methyl group on carbon-4 (δ 1.21) resulted in a 7% enhancement in the C-4 proton (δ 4.75) with no significant enhancement in the C-5 proton (δ 4.92). Upon comparison of the model diol's spectra (Table 1), larger differences in the chemical shifts were observed between the cyclic phenylboronides (<u>10</u>, <u>11</u>) than between the free diols (<u>7</u>, <u>6</u>). The chemical shifts of C-16 (δ 3.74) and C-15 proton (δ 3.65) of pumiliotoxin B (<u>2</u>) were downfield at 4.29 ppm and 4.37 ppm, respectively, in the phenylboronide are in all respects consonant with those of the model <u>threo</u> diol(<u>6</u>) and its boronide derivative (<u>11</u>).

their	phenylboronides.	Solvent	CDC1 ₃ .

Table 1. Chemical shifts of pumiliotoxin B, model threo- and erythro- diols and

	Pumiliotoxin B			<u>threo</u> -Diol		<u>erythro</u> -Diol	
	free (<u>2</u>) b	Phenyl- ooronide		free (<u>6</u>)	Phenyl- boronide (<u>11</u>)	free (<u>7</u>)	Phenyl- boronide (<u>10</u>)
С-15 Н	3.65	4.37	С-5 Н	3.68	4.43	3.89	4.92
C-16 H	3.74	4.29	С-4 Н	3.77	4.35	3.80	4.75
C-17 CH ₃	1.09	1.40	сн ₃ *	1.05	1.42	1.11	1.19

* C-1 CH_3 in (<u>6</u>), (<u>7</u>); CH_3 on C-4 in (<u>10</u>), (<u>11</u>)

In conclusion, the present data allow a definition of the relative configuration of the side chain of pumiliotoxin B with the 13, 14-double bond in the E-configuration and the C-15, 16 diol moiety as the <u>threo</u> configuration¹⁰⁾. The 13, 14-double bond in pumiliotoxin A and 7-hydroxy derivatives (allopumiliotoxins) of pumiliotoxin A and B also appear to have the E-configuration, and <u>threo</u> diol relation in the side chain of the 7-hydroxy derivatives of pumiliotoxin B are inferred from the similar behavior in nmr of their phenylboronides⁸⁾.

References:

- 1) J.W. Daly and C.W. Myers, Science 156, 970 (1967).
- J.W. Daly, T. Tokuyama, G. Habermehl, I.L. Karle and B. Witkop, Justus Liebigs Ann. Chem., <u>729</u>, 198 (1969).
- J.W. Daly, T. Tokuyama, T. Fujiwara, R.J. Highet and I.L. Karle, J. Am. Chem. Soc., 102, 830 (1980).
- 4) L.E. Overman and I.L. Bell, J.Am. Chem. Soc., 103, 1851 (1981).
- 5) E.J. Corey, N.W. Gilman and B.E. Ganem, J. Am. Chem. Soc., <u>90</u>, 5616 (1968).
- 6) C. Pascual, J. Meier and W. Simon, Helv. Chim. Acta, 49, 164 (1966).
- 7) S.W. Tobey, J. Org. Chem., <u>34</u>, 1281 (1969).
- 8) T. Tokuyama, J.W. Daly and R.J. Highet, Tetrahedron, submitted.
- 9) R.S. Glass, D.R. Deardorff and K. Henegar, Tetrahedron Lett., <u>21</u>, 2467 (1980).
 T. Nakata and T. Oishi, Tetrahedron Lett., <u>21</u>, 1641 (1980).
- W.C. Still and J.H. McDonald III, Tetrahedron Lett., <u>21</u>, 1031 (1980). W.C.
 Still and J.A. Schneider, Tetrahedron Lett., <u>21</u>, 1035 (1980). For a review: D.A. Bartlett, Tetrahedron, <u>36</u>, 2 (1980).
- 11) Prof. L.E. Overman has arrived at the same <u>threo</u> configuration for the pumiliotoxin B side chain, private communication.

(Received in Japan 22 February 1982)

2124